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Abstract

Bell’s theorem adds probabilities when it should use amplitudes. With amplitudes and
trigonometric identities, a theory in which the result at one detector does not depend on the
other detector’s setting or outcome can produce the correct statistics for a Bell test. When
a photon’s polarization before a measurement is a hidden variable, Bell’s theorem thus does
not rule out local realism.

1 Introduction

In general, it is necessary to do arithmetic for quantum events by adding and multiplying
complex amplitudes, rather than the probabilities that result after applying the Born rule. Failing
to do so can result in missing interference terms, as in the double-slit experiment, since the
operations of addition and taking the complex conjugate do not commute with each other over
the complex numbers[1].

The original proof of Bell’s theorem|[2] involves adding quantum probabilities: expectation
values come from the sum of probabilities, so either adding or multiplying those involves adding
probabilities.

2 Bell’s Theorem

For a Bell test using photon polarization and the Bell state |®T), an iteration of the experiment
will involve two photons polarized at some angle X, and detectors d4 set at an angle 64 and dp
at angle 6. The relative angle between X and 64 is A, and between X and g is B.

To obey the classical version of Malus’s law[3], the probability that the photon at d4 passes
through is cos?(A), the probability it is blocked is sin?(A), and the same is true for dg and B.
The probability that the results at d4 and dp agree is cos?(A — B) and that they disagree is
sin?(A — B)[4].

Bell’s theorem claims that a local realist theory, in which the result at d4 depends on A but
not B, and at dg depends on B but not A, cannot reproduce those statistics.

Using trigonometric identities, and doing arithmetic on amplitudes rather than probabilities,
it is possible to design such a theory.

3 A Local Realist Solution

We will use cos(x) as the amplitude that a photon polarized with relative angle x passes
through a linear polarizer, and isin(z) as the amplitude that it does not. These satisfy the
desired probabilities for individual measurements, after applying the Born rule.



It may be possible to use other functions, or that there is some obstruction to using these,
but it should demonstrate that local realism may be a lot more plausible than Bell’s theorem
seems to indicate.

To get the cos?(A — B) and sin?(A — B) results, we have to use the convention that exactly
one of A and B is negative. Maybe there is a good reason for that, but it makes the math work.

The following trigonometric identities[5] will be useful:

cos(—x) = cos(x),

sin(—x) = —sin(x),
cos(A)cos(B) + sin(A)sin(B) = cos(A — B),
sin(A)cos(B) — cos(A)sin(B) = sin(A — B).

The amplitude of passing through at both d4 and dp is cos(A)cos(—B) = cos(A)cos(B), and
of being blocked at both is d4 and dp is isin(A)isin(—B) = sin(A)sin(B). If we multiply each
of those by their complex conjugates and then add them together, we will be missing a term. So,
it appears important to add the amplitudes before computing a probability, in which case we get
the right result.

The amplitude of passing through d4 but not dp is cos(A)isin(—B) = —icos(A)sin(B),
and dp but not dy is isin(A)cos(—B) = isin(A)cos(B). Adding them together results in a
subtraction, since they have opposite signs, so we again get the right probability after applying
the Born rule.

4 Conclusion

These results suggest that Bell’s theorem does not disprove local realism.

Here the polarization of the photons before measurement, X, is a hidden variable. It leads
to a quantized measurement outcome without itself being quantized, which is relevant for other
arguments against hidden variables, such as the Kochen-Specker theorem|6].
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