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Abstract

An attacker who intercepts qubits can break certain classes of quantum
key distribution protocols. The idea is to record classical bits for outcomes
in each of the small set of allowed measurement bases, for each qubit sent
during the key exchange, using a sequence of simple quantum circuits.
That approach also seems to enable predicting the future results of non-
commuting measurements, which the uncertainty principle forbids.

1 Introduction

This paper describes attacks on a certain class of quantum key distribution
protocols, when an eavesdropper, Eve, intercepts each qubit X that Alice sends
to Bob as part of a quantum key exchange.

The idea is for Eve to repeatedly apply gates to every X, in each basis
that Bob can choose, so that a measurement in the z basis corresponds to a
measurement in that basis, CNOT from X to a target qubit so that they agree
in the z basis, measure the target, record the outcome in a classical bit, zero the
target, then put X back to its previous state. Section 2 describes the algorithm
in more detail.

For every X, Eve only has to get correct results for each of a finite number
of possible bases, and thus does not need to violate the no-cloning theorem.

Section 3 shows that the attack has applications to the uncertainty principle.
If Eve records what Bob will measure in the x basis and in the z basis, for the
same qubit, that seems to allow her to predict the results of two non-commuting
measurements.

2 Quantum Key Distribution

2.1 Algorithm Sketch

If Alice and Bob do a quantum key exchange that involves roughly the
following steps:
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1. Alice sends n qubits to Bob,

2. Bob measures each qubit in one of a small number of different bases,

3. Alice and Bob announce over a public channel which basis each qubit
should be measured in and which qubits will form the key,

an eavesdropper, Eve, might take the following approach:

1. Start with:

(a) One extra qubit, Y , set to |0⟩.
(b) A way of storing one classical bit for each basis Bob might measure

in, for each qubit Alice will send.

i. If a protocol sends n qubits and allows measuring each of them
in any of m bases, that will require nm classical bits.

2. For each qubit X that Alice sends to Bob:

(a) For each basis B that Bob might measure in:

i. Apply a gate to change X into B.

ii. Apply the gate CNOT(X, Y ).

iii. Measure Y in the |0⟩, |1⟩ basis, which corresponds to a measure-
ment in B.

iv. Record the classical bit for that measurement outcome.

v. Zero Y .

vi. Apply the inverse matrix for changing into B, to change X out
of B, restoring X to its original basis.

(b) Pass X, which is back in its original state, to Bob.

2.2 Algorithm Description

The CNOT(X, Y ) gates change a|00⟩+ b|10⟩ to a|00⟩+ b|11⟩, where a is the
probability amplitude that X is measured |0⟩ and b is the probability amplitude
that it is measured |1⟩. Then, X and Y are guaranteed to agree with each other
in the z basis. Each change of basis means that |0⟩ and |1⟩ correspond to a
measurement in the desired basis.

When Bob picks a basis for each qubit, the resulting measurement will agree
with Eve’s corresponding measurement for that qubit and basis. As Alice and
Bob announce which qubits and bases form the key, Eve can look up the corre-
sponding values that are stored in classical bits.

The idea seems similar to a parity measurement[1]: CNOT(A, C), CNOT(B,
C), and check if C is measured as |0⟩ or |1⟩, to see if A and B agree in the z
basis. If C has been flipped 0 or 2 times, C is |0⟩, and A and B agree; otherwise
C has been flipped once, and A and B disagree.
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In some cases, it may be better for Eve to copy all of the n bases to n target
qubits (Yi), pass Bob’s X along, then measure each of the n targets. That may
lead to less of a delay between Alice sending a qubit and Bob receiving it.

It seems harder to model the latter approach, since a CNOT from X to Y2

changes some of the probabilities for Y1, when X, Y1, and Y2 are all viewed as
one subsystem. That issue is discussed more in [2].

2.3 Assumptions about Circuits

The algorithm above assumes that certain things are possible, including:

1. For any measurement basis, there is a quantum logic gate that corresponds
to changing the qubit X into that basis, and an associated unitary matrix.

2. A gate corresponding to the matrix inverse of 1) will restore X to its
original basis.

3. CNOT gates are possible.

4. Zeroing a qubit is possible and does not affect other qubits.

5. Measuring one qubit does not affect other qubits.

If the measurement basis vectors are orthogonal, 1) will be possible. The
idea is to take the first basis vector to |0⟩ and the second basis vector to |1⟩.

Then, 2) follows because unitary matrices are invertible.
CNOT gates have been demonstrated, including for qubits based on photon

polarization[3].
Zeroing a qubit is not unitary or reversible, which means it cannot be

achieved with a standard quantum logic gate. It is still something that makes
sense for quantum circuits, since it is common to start a run of a program with all
qubits in |0⟩. The quantum computing library Qiskit provides a reset(qubit)

function on a QuantumCircuit, which allows zeroing a qubit as part of a circuit[4].
When measuring or zeroing a qubit, the state vector may change, but other

qubits are not physically changed, with or without any amount of entanglement.
[2] discusses some counterintuitive details.

2.4 Existing Protocols

Some existing quantum key distribution protocols seem to have the structure
described above, including BB84[5] and several of its variants[6]. BB84 involves
measurements of photons in the |0°⟩, |90°⟩ basis or the |45°⟩, |−45°⟩ basis.

3 The Uncertainty Principle

The preceding ideas on quantum key distribution seem relevant to the uncer-
tainty principle, which claims that it should be impossible to know the results
of multiple non-commuting measurements[7].
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Eve should then be unable to know what Bob will measure in both the x
basis and the z basis, for the same X: those two measurements do not commute.
The algorithm described in Section 2 seems to allow that to happen.

It feels a bit extreme to claim that a few changes of basis and CNOT gates
are enough to show that quantum mechanics is incomplete[8], but it does look
like Eve can store 1 classical bit for a measurement in the x basis, 1 classical
bit for a measurement in the z basis, then have those outcomes agree with
whichever of those two bases Bob measures in.
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